Brief doc
A feature descriptor match refiner, using Homography and svd estimation.
Parameters
inlier_thresh type: float not required default: 25.0
The inlier threshold of pose found.
min_inliers type: unsigned int not required default: 100
minimum number of inliers
n_iters type: unsigned int not required default: 200
number of ransac iterations
reprojection_error type: float not required default: 43.5
error threshold
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
test_2d type: cv::Mat
The 2d test points.
test_3d type: cv::Mat
The 3d test points.
train_2d type: cv::Mat
The 2d training points.
train_3d type: cv::Mat
The 3d training points.
Outputs
R type: cv::Mat
T type: cv::Mat
found type: bool
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The verified matches.
matches_mask type: cv::Mat
The matches mask, same size as the output matches.
Brief doc
Draw pose
Inputs
K type: cv::Mat
The camera projection matrix.
R type: cv::Mat
3x3 Rotation matrix.
T type: cv::Mat
3x1 Translation vector.
image type: cv::Mat
The original image to draw the pose onto.
trigger type: bool
Should i draw.
Outputs
output type: cv::Mat
The pose of the fiducial, drawn on an image
Brief doc
Given descriptors, find matches.
Parameters
key_size type: unsigned int not required default: 8
multi_probe_level type: unsigned int not required default: 1
n_tables type: unsigned int not required default: 4
radius type: unsigned int not required default: 55
Inputs
test type: cv::Mat
Train descriptors.
train type: cv::Mat
Test descriptors.
update type: bool
If set to true, update the descriptors.
Outputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
Brief doc
Uses the R|T of the camera to determine when a frame in novel.
Parameters
angle_thresh type: double not required default: 0.0872664625997
The angle thresh hold.
n_desired type: unsigned int not required default: 4294967295
The number of desired views
reset type: bool not required default: False
Reset observations.
Inputs
R type: cv::Mat
The orientation.
T type: cv::Mat
The translation.
found type: bool
Whether or not the R|T is good.
Outputs
novel type: bool
Whether or not the R|T is novel relative to previous novel R|T poses.
Brief doc
Draw the Hz on an image.
Inputs
image type: cv::Mat
The original image to draw the pose onto.
Outputs
image type: cv::Mat
The image with fps drawn on it.
Brief doc
A feature descriptor matcher.
Inputs
test type: cv::Mat
Train descriptors.
train type: cv::Mat
Test descriptors.
Outputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
Brief doc
Draws matches.
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
matches_mask type: cv::Mat
The descriptor matches mask.
test type: cv::Mat
Test keypoints.
test_image type: cv::Mat
Test image.
train type: cv::Mat
Train keypoints
train_image type: cv::Mat
Test image.
Outputs
output type: cv::Mat
An output image.
Brief doc
Displays an image. If a dictionary is defined in triggers, each key is defined as an output, the value being a bool of whether it’s been pressed
Parameters
autoSize type: bool not required default: True
Autosize the window.
maximize type: bool not required default: False
Fullscreen the window, takes precedence over autoSize.
name type: std::string not required default: image
The window name
triggers type: boost::python::api::object not required no default value
A dict of trigger keys, e.g. {‘x_key’:ord(‘x’)}
waitKey type: int not required default: -1
Number of millis to wait, -1 for not at all, 0 for infinity.
Inputs
image type: cv::Mat
The image to show
Brief doc
Read a cv::Mat from a yaml or xml file.
Parameters
filename type: std::string required default:
Name of mat to read.
Outputs
mat type: cv::Mat
A mat to print.
Brief doc
Reads a single image, const cell.
Parameters
image_file type: std::string not required default: lena.jpg
The path to the image to read.
lock_name type: std::string not required default:
If set to something, an flock will be created for that file
mode type: ecto_opencv::Image::Modes not required default: COLOR
Legal Values: GRAYSCALE (0) COLOR (1) ANYDEPTH (2) ANYCOLOR (4) UNCHANGED (-1)
The image read mode.
refresh type: bool not required default: False
If true, the image is re-read every time
Outputs
image type: cv::Mat
The image in full color.
Brief doc
Parameters
directory type: boost::python::api::object not required default: .
The template directory.
inlier_thresh type: float not required default: 25.0
The inlier threshold of pose found.
key_size type: unsigned int not required default: 8
min_inliers type: unsigned int not required default: 100
minimum number of inliers
multi_probe_level type: unsigned int not required default: 1
n_features type: int not required default: 1000
The number of desired features
n_iters type: unsigned int not required default: 200
number of ransac iterations
n_levels type: int not required default: 3
The number of scales
n_tables type: unsigned int not required default: 4
nonmax type: bool not required default: True
Use the FAST nonmax suppression.
radius type: unsigned int not required default: 55
reprojection_error type: float not required default: 43.5
error threshold
scale_factor type: float not required default: 1.20000004768
The factor between scales
show_matches type: boost::python::api::object not required default: False
Display the matches.
thresh type: int not required default: 20
The FAST threshold. 20 is a decent value.
use_fast type: boost::python::api::object not required default: False
Use fast or not.
use_lsh type: boost::python::api::object not required default: True
Use lsh for matching instead of brute force.
Inputs
K type: ecto::tendril::none
Any type
color_image type: ecto::tendril::none
Any type
image type: ecto::tendril::none
Any type
mask type: ecto::tendril::none
Any type
points3d type: ecto::tendril::none
Any type
Outputs
R type: cv::Mat
3x3 Rotation matrix.
T type: cv::Mat
3x1 Translation vector.
debug_image type: cv::Mat
The image with fps drawn on it.
found type: bool
Brief doc
Takes a set of planes and returns the one overlaping most with the center of the image
Parameters
do_center type: bool not required default: False
If set to true, the plane origin will be at the center of the image.
size type: int not required default: 100
The edge of the central square in which to look for the plane.
Inputs
K type: cv::Mat
The calibration matrix.
R type: cv::Mat
The currently estimated plane rotation.
T type: cv::Mat
The currently estimated plane origin.
masks type: cv::Mat
The masks for each plane.
planes type: std::vector<cv::Vec<float, 4>, std::allocator<cv::Vec<float, 4> > >
The different found planes (a,b,c,d) of equation ax+by+cz+d=0.
Outputs
R type: cv::Mat
The rotation component of the plane pose
T type: cv::Mat
The translation component of the plane pose
coeffs type: cv::Vec<float, 4>
The coefficients of the plane.
found type: bool
Whether or not the R|T is good.
Brief doc
Parameters
directory type: boost::python::api::object not required default: .
The directory of the template.
Outputs
R type: cv::Mat
A mat to print.
T type: cv::Mat
A mat to print.
descriptors type: cv::Mat
A mat to print.
image type: cv::Mat
The image in full color.
points type: cv::Mat
A mat to print.
points3d type: cv::Mat
A mat to print.
Brief doc
Parameters
cols type: boost::python::api::object not required default: 7
Number of cols in the pattern.
debug type: boost::python::api::object not required default: True
Debug the detector.
pattern_type type: boost::python::api::object not required default: ASYMMETRIC_CIRCLES_GRID
Legal Values: CHESSBOARD (0) CIRCLES_GRID (1) ASYMMETRIC_CIRCLES_GRID (2)
Type of pattern
rows type: boost::python::api::object not required default: 11
Number of rows in the pattern.
square_size type: boost::python::api::object not required default: 0.1
The pattern spacing
Inputs
K type: ecto::tendril::none
Any type
color_image type: ecto::tendril::none
Any type
image type: ecto::tendril::none
Any type
Outputs
R type: cv::Mat
3x3 Rotation matrix.
T type: cv::Mat
3x1 Translation vector.
debug_image type: cv::Mat
The image with fps drawn on it.
found type: bool
Found some points.
Brief doc
A FAST feature detector.
Parameters
nonmax type: bool not required default: True
Use the FAST nonmax suppression.
thresh type: int not required default: 20
The FAST threshold. 20 is a decent value.
Outputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
Brief doc
Compose to transforms.
Inputs
R1 type: cv::Mat
3x3 Rotation matrix.
R2 type: cv::Mat
3x3 Rotation matrix.
T1 type: cv::Mat
3x1 Translation vector.
T2 type: cv::Mat
3x1 Translation vector.
Outputs
R type: cv::Mat
3x3 Rotation matrix.
T type: cv::Mat
3x1 Translation vector.
Brief doc
Take key points and return an array of the x,y coordinates.
Inputs
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints
Outputs
points type: cv::Mat
The array of x,y coordinates
Brief doc
Select 3D points given 2D locations.
Inputs
points type: cv::Mat
The 2d coordinates (matrix with 2 channels)
points3d type: cv::Mat
The 3d points to select from.
Outputs
points3d type: cv::Mat
The 3d points, same dimensions as the input, 3 channels (x, y and z).
Brief doc
Select 3D points given a radius in the center of the image.
Parameters
radius type: float not required default: 0.0
A radius, in pixel with which to select a plane, from the center.
Inputs
image type: cv::Mat
To base the size off of.
points3d type: cv::Mat
The 3d points to select from.
Outputs
points3d type: cv::Mat
The 3d points, same dimensions as the input, 3 channels (x, y and z).
Brief doc
Parameters
n_features type: int not required default: 1000
The number of desired features
n_levels type: int not required default: 3
The number of scales
nonmax type: bool not required default: True
Use the FAST nonmax suppression.
scale_factor type: float not required default: 1.20000004768
The factor between scales
thresh type: int not required default: 20
The FAST threshold. 20 is a decent value.
use_fast type: boost::python::api::object not required default: False
Use fast or not.
Inputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
points3d type: cv::Mat
The 3d points to select from.
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
points type: cv::Mat
The array of x,y coordinates
points3d type: cv::Mat
The 3d points, same dimensions as the input, 3 channels (x, y and z).
Brief doc
An ORB detector. Takes a image and a mask, and computes keypoints and descriptors(32 byte binary).
Parameters
n_features type: int not required default: 1000
The number of desired features
n_levels type: int not required default: 3
The number of scales
scale_factor type: float not required default: 1.20000004768
The factor between scales
Inputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.